Half bow, my thought behind forward handle and string angle is as you draw the bow back your string angle increases. If you put let’s say an inch of handle up front as opposed to the belly and you pull your bow back to 28” then you would have the same angle as pulling a traditional belly handle bow 27”. Not that big of a difference it seems, but it’s definitely something. And in that same example, a wooden bow has the benefit of less stress, as equivalent to only pulling a belly handle bow 27”. Those 2 coupled together should result in a less stressed belly with more energy storage.
A FG bow doesn’t benefit from less stress since it has no memory, so it leads me to believe the string angle on those last few inches are more than insignificant. Plus on most FG bows with big risers, they are putting closer to 1.5” up front.
We’ll see though. These are just unproven thoughts in my head at this point.
Yes, I'm with you. It will indeed make the string angle that of a 1" shorter draw. But... if you're willing to come with me on a bit of a silly thought experiment here. If all else is equal, say if you were to take an already made bow and saw the handle buldge off the belly and stick it to the back (assume you find a way to do that which doesn't compromise the integrity of the construction). Now your bow's handle has been moved forward an inch, and everything else is untouched.
You have made the bow safer. Drawing to 29" will strain the bow as much as drawing to 28" used to. But it will also make the bow weaker at any given draw length. Drawing to 28" will get you the same poundage as drawing to 27" used to. Also, without changing anything about how the limbs are bending or the length of the string, you have changed your brace height from say 7" to 8". So to get the same length power stroke, you would have to draw it one inch farther anyway. But if you drew to 28" before moving the handle, and to 28" after, you'd find that you'd ended up with a bow with a lighter draw weight and a shorter power stroke.
Maybe you don't want it to be weaker, so you add some thin belly lams to get the poundage back up to where it was. And maybe you don't want a higher brace height so you lengthen the string a bit. You end up with a bow with the same draw weight, brace height, and power stroke length as the original. But for what trade off? Well the most obvious one is that your limbs are heavier now. Also, when you lengthened the string, you let the limbs bend less at brace. So I think you would find that your bow has less string tension at brace than it did in its original form, which means the f/d curve would be less fat than it was originally, which means more stack, and less stored energy. I think moving the handle forward will have near identical effects to deflexing a bow. All the same pluses and minuses.
If you're after good string angle (which I agree is important), wouldn't recurves help a lot more?
But "simpler" modern designs greatly exceeded the Turkish records.
The Turkish data from Adam K doesn't really show a 200 fps 10gr/p trend.
Modern bows use modern materials. And not just modern bow materials, but modern strings, carbon arrows, etc. This gives an advantage. And also innovations like center shot. This is kind of my point.
So yes, the old Turkish records have been soundly beaten. But even so, I think "greatly exceeded" is a bit of an exaggeration. Setting aside compound bows, the Turk's numbers aren't exactly laughable. And when compared to our attempts at primitive material bows, they're amazing. As far as I'm aware, a modern attempt at a primitive materials bow has yet to beat the old flight records. Generally the primitive bows we are happy to call impressive today are shooting a fraction of the distance.
We are not the inheritors of 100 generations of unbroken bow making knowledge living in a society where you start learning archery as a toddler and live and die by the bow. Our connection to that knowledge got damaged when warfare moved on from archery. Even our attempts at faithfully recreating asiatic composite bows fail to live up to their antique counterparts. However, modern materials have helped us a lot. But it seems to me like we achieved a convenient, easy to maintain, and long lasting modern bow which also preformed admirably, and (mostly) stopped there. When we might have the ability to take performance who knows how much further. I see few people trying to take it in the direction I'm curious to to see.
I'm not holding up Turkish bows as the greatest design possible or anything. With modern knowledge and science we can point out improvements. But I think the asiatic composites were on to something. They were chasing some universal concepts that I think are simply true. I could talk about many examples, but just to pick one: the more reflex, the more energy a bow will store at the same draw weight. I really don't see any way around that. If anyone is finding that adding reflex is causing worse performance, the issue is probably with the materials. Wood will obviously fail or break down in such high stress designs. Perhaps fiberglass isn't good for the job either. If tests show that fiberglass bows are slower when bent that far (I haven't actually seen these results, but it seems plausible to me), then fiberglass has some kind of internal friction or some inefficiency when bent so extremely. That's not an argument against the high reflex concept, that's just an argument that fiberglass is not the ideal material for the ideal fast bow.
Maybe no material in the universe can spring back from extreme bends as well as horn and sinew. That would be interesting to know in itself. I'd enjoy it if there were true. Go nature. That would indeed suggest that the old asiatic composites got nearly all the performance out of highly reflexed bows as ever could be. But if anyone were to suggest that, I'd be immediately skeptical. Nature is amazing, but modern material science is too. There's got to be some material or combination of materials that can bend that much, store that much energy, and be lighter/spring back faster. And it's hard to imagine how such a bow wouldn't be breaking records in its category.