Ok skeptics I guess you have a problem with clicking a link.
So here is the one I posted for you on page five.
Now please stop chewing on my ankles.
There is a message for you at the end of page.
Bare in mind this study was done in 2008 so if they are still complaining
about the mortality and poisoning it must be because they continue to
subject the poor birds to that fate. Or the documentry was way old?
Please tell me your take on it.
I included the conclusion. I read the paper in it's intireity
Effectiveness of Action to Reduce Exposure of Free-Ranging ...
Dec 24, 2008 ... Condors were routinely recaptured and treated to reduce their lead levels as ... We simulated the effect of ending the existing lead exposure ...
We used a previously published population model [8] to assess likely long-term trends in the numbers of condors in the absence of further releases and without chelation and other treatment of birds with elevated blood lead concentrations. According to this model, the condor population would tend to decline under present conditions unless natural adult mortality was at the lower end of the likely range or reproduction was at the “maximum conceivable” level (Table 5). Since the assumptions of the “maximum conceivable” scenario are extremely unlikely to apply to any real population of condors, this indicates that the Grand Canyon condor population is unlikely to be self-sustaining at current levels of exposure to lead.
Rhys E. Green,1,2,* W. Grainger Hunt,3 Christopher N. Parish,3 and Ian Newton4
Tom Pizzari, Editor
Author information ► Article notes ► Copyright and License information ▼
Copyright Green et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This article has been cited by other articles in PMC.
Go to:
Abstract
California condors (Gymnogyps californianus) released into the wild in Arizona ranged widely in Arizona and Utah. Previous studies have shown that the blood lead concentrations of many of the birds rise because of ingestion of spent lead ammunition. Condors were routinely recaptured and treated to reduce their lead levels as necessary but, even so, several died from lead poisoning. We used tracking data from VHF and satellite tags, together with the results of routine testing of blood lead concentrations, to estimate daily changes in blood lead level in relation to the location of each bird. The mean daily increment in blood lead concentration depended upon both the location of the bird and the time of year. Birds that spent time during the deer hunting season in two areas in which deer were shot with lead ammunition (Kaibab Plateau (Arizona) and Zion (Utah)) were especially likely to have high blood lead levels. The influence upon blood lead level of presence in a particular area declined with time elapsed since the bird was last there. We estimated the daily blood lead level for each bird and its influence upon daily mortality rate from lead poisoning. Condors with high blood lead over a protracted period were much more likely to die than birds with low blood lead or short-term elevation. We simulated the effect of ending the existing lead exposure reduction measures at Kaibab Plateau, which encourage the voluntary use of non-lead ammunition and removal of gut piles of deer and elk killed using lead ammunition. The estimated mortality rate due to lead in the absence of this program was sufficiently high that the condor population would be expected to decline rapidly. The extension of the existing lead reduction program to cover Zion (Utah), as well as the Kaibab plateau, would be expected to reduce mortality caused by lead substantially and allow the condor population to increase.
Introduction
The California Condor (Gymnogyps californianus) became extinct in the wild in the 1987 when the last wild individual was captured and added to the captive flock, which then consisted of 27 birds. Since 1992, releases of these birds and their captive-bred progeny have re-established wild populations of condors in California, Mexico and around the Grand Canyon in Arizona and Utah. Individual condors in these populations have suffered from lead poisoning caused by ingested ammunition, which is the most frequently diagnosed cause of death among Grand Canyon condors. This holds despite intensive efforts to monitor blood concentrations of lead and to treat birds with high levels using chelating agents [1]. The condors in the Grand Canyon population range widely in Arizona and Utah and feed on carrion, a proportion of which comes from the carcasses of game animals shot by hunters using lead ammunition. Ingestion of shotgun pellets and fragments of bullets in flesh from such carcasses is the route by which lead poisoning occurs. Condors are located as frequently as possible using satellite tags and VHF radio tags and those that cease to move are recovered. Birds are also captured routinely and their blood lead concentrations measured. Any individuals with high levels are held for treatment to reduce the burden of lead in the body before release. Action is also taken on the Kaibab Plateau, Arizona to reduce exposure of condors to lead by encouraging hunters to use non-lead bullets and to remove potentially contaminated gut piles. The level of condor mortality caused by lead that would occur in the absence of chelation therapy and lead exposure reduction is of interest because it might not always be practical to locate birds daily and trap all condors routinely once or twice per year for blood lead monitoring, and implementation of lead exposure reduction schemes requires resources [2]. Could the reintroduced population persist if the lead exposure reduction and treatment programs ceased or were reduced in scope? What would be the effect of reducing exposure to spent lead ammunition throughout the range of this population? As a step towards addressing these questions, we report here a statistical model of blood lead levels in free-ranging condors, which extends previous analyses [3]. We took advantage of the unusually complete radio-tracking data, which allow the influence on blood lead of the location of condors within their geographical range to be assessed. Our objectives were to model the distribution of blood lead levels throughout the year in the absence of treatment, and then to estimate the mortality rates that would prevail. Finally, we used the model to explore the possible effects on condor mortality of withdrawing or increasing measures to reduce exposure of condors to spent lead ammunition.
Materials and Methods
Field studies
We used data for 2005, 2006 and 2007 derived from the monitoring of movements and blood lead levels of free-ranging condors [1]. The dependent variable in our analyses was the concentration of lead in the blood of a condor determined within five days after capture. Blood lead levels were determined using a portable field tester (LeadCare Blood Lead Testing System). Some blood samples were also analysed by atomic absorption spectroscopy at the Louisiana State University Diagnostics Laboratory using a Perkin Elmer Analyst 800. Levels of lead in the same blood sample measured using the field tester and in the laboratory were strongly correlated, but laboratory measurements gave significantly higher values (see Figure 2 of reference [1]). Using 99 cases in which the lead concentration in the same blood sample had been determined by both methods, we found that the mean concentration of lead measured in the laboratory was larger than that from the field tester by a factor of 1.914. In all analyses we therefore used a laboratory determination whenever one was available and otherwise adjusted the field tester measurement using this correction factor.
Figure 2Hypothetical changes in blood lead concentration over time for California condors moving between zones with high and low daily risk of ingesting lead.
We modeled the blood lead level in each free-ranging condor in relation to the locations it had used before it was recaptured for testing. During the study period, roost locations of condors marked with VHF or satellite tags were determined on the majority of days for all tagged condors, and attributed to one of the following five zones; Paria (Vermilion Cliffs), Colorado River Corridor, Kaibab Plateau, South Zone and North Zone (Utah). A location was taken to be a roost location if it was obtained later than16.00h. local time. Condors are known to range widely, even within a day [3], so the ideal analysis would take into account the bird's location at several times during each day. However, only the data for satellite tagged birds would permit this. Roost locations were recorded for as many days as possible during the period beginning with the initial release of each bird, or its release after capture for blood lead monitoring and ending with another capture at which blood lead concentration was determined. For days on which the roost location was not recorded, we interpolated the roost zone used by assuming that it was the same as that on the nearest day with data available. Overall, it was necessary to interpolate the roost zone on 27.2% of days, with the range of this proportion for individual birds being 11.1% to 59.9%. We had eligible data derived from 60 individual condors consisting of 322 pairs of blood lead measurements preceded by periods comprising, in total, 41,230 bird-days with known or interpolated roost locations.
Numbers of deer, elk and buffalo reported as killed by hunters in each zone in 2005–2007 were obtained from the Arizona Game and Fish Department and the Utah Department of Natural Resources. We estimated the number of carcasses and gut piles potentially contaminated with lead and left in the field for scavengers by using information collected on the proportion of kills made with lead ammunition and the number of lead-killed animals from which gut piles were brought in by hunters for safe disposal. We also assumed that in addition to the number of animals reported as killed with lead bullets, an additional 10% of that number were wounded and died unrecovered soon after, thereby becoming available to condors.
Analysis and statistical modeling of blood lead data
We assumed that, with no further ingestion, the relationship between blood lead concentration and time after ingestion of fragments of metallic lead could be described by a simple three compartment model, with one-way movement of lead between successive pairs of compartments. Although this model is a simplification, it has the advantage of requiring the estimation of only two parameters and seems likely to capture the main features of real changes in blood lead. We assumed that a constant proportion of the ingested lead enters the blood from the gut per unit time and that fragments are not expelled from the gut within the period that significant absorption is occurring. Hence, the proportion of the lead ingested that remains in the gut at time t (in days) since ingestion is given
since ingestion is given by exp(−k1t), where k1 is a constant, and (1−exp(−k1t)) is the proportion of lead ingested that has moved from the gut to the blood by that time. We also assumed that a constant proportion per unit time of the lead present in the blood was lost to another compartment, such that the amount in the blood would decline by a proportion (1−exp(−k2)) per day in the absence of absorption. The quantity of lead in the blood, as a proportion of that ingested, is then given by the function
(1)
Assuming that blood volume is constant, blood lead concentration is proportional to g(t). Note that this expression approximates to g(t) = exp(−k2t) when k1 is much larger than k2. That is, when absorption from the gut is very rapid, blood lead concentration declines exponentially with time since ingestion. The model is illustrated for a single value of k2 and three values of k1 in Fig. 1.
Figure 1Models of the relationship between blood lead concentration and time since ingestion of metallic lead in California condors.
We next used the function g(t) to explore how the concentration of lead in the blood of an average condor would be expected to change over time, given the possibility of ingestion of lead on more than one day. We assumed that the condor spends some time in areas where there is a high risk each day of ingesting lead and some time in low risk areas. We imagined a large number of condors, all showing the same movement pattern. On each successive day, the average quantity of lead ingested by the birds would, if it was all absorbed immediately, increase the
When you report back after reading this I will post the rest after I quiz you
Zuma